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Abstract

A rapid quasi-three-dimensional analysis has
been ceveloped for blace-to-blade flows in turbo-
machinery. The analysis solves the unsteady Euler
or thin-layer Navier-Stokes equations in a body-
fitlea coordinate system, [t accounts for the
eftects of rotation, ragiuvs change, and stream-
surface thickness. The Balawin-Lomax eddy-
viscosity model is used for turbulent flows. The
equations are solved using a two-stage Runge-Kutta
icheme made efficient by use of vectorization, a
variable time-step, ang a flux-tased multigrid
scheme, which are all described. A stability
analysis is presentec for the two-stage scheme.
Results tor a flat-plate mode) problem show the
applicapbrlity of the methog to axial, racial, ang
rotating geometries. Resuits for a centrifuqal
impeller anc & radial ogiffuser show that the
Quasi-tnree-aimen  nal viscous analysis can be 3
practical gesign 1.

Introguction

Turbomachinery intenced t0 produce large
amgunts of power from a small volume often reguire
use of radial-flow or mixeu-flow comnonents, that
15, components in which the streamwise velocity
15 not strictly axial. Radial-flow turdomachines
such as centrifugal impellers, radial diffusers,
and radgial-inflow turbines have a precominantly
ragial flow girection, Mixed-flow turbomachines
Mmay pe used wnen restrictions on space prevent a
completely radial flow. Complicated geometries,
shock waves, and viscous phenomena make analysis
of ragial- or mixeo-flow turbomachines more aif-
ficult than analysis of strictly axial-flow
machines.

Analysis of axial-flow turbomachinery b)ade
rows 1s uswally simplifiea by modelling a blade
section as a flat cascade. The governing equa-
tions for a flat cascade are the same two-
cimensional flow equations that are sglved for
isolateg airfoils, so cascage analyses often ram
neavily on numerical technigues developea for
lwo-01mensional external flows. Examplis of fla:

cascage analyses include panel SGS"OGS' poten-
t1al methods,* Eu;er solutions,¥+% ang Navier-
Stoxes solutions. 6

Flows 1n raagral- or mixed-flow turbomachines
are inherently three-gimensional, requiring speci-
ficatyon of the axial, racisl, ang tangential
velocity components to fully specify the flow. A
simplification that allows these machines to be
analyzea in two 9imensions wds proposec by
C.H. wu in 1952, In Wu's model the flow is
assumed to follow an axisymmetric stream surface
(Wu's "S2 surface,” Fig. 1}, Tne radius and
thickness of the stream surface are assumec to be
krow as functions of the streamwise distance.
These quantities are usually obtained from an
axisymmetric through-flow or “mericinnal®

AHalysis.B sometimes coupled with a boundary
layer analysis’? on the hub and shroud.

The equations governing the flow along the
stream surface combine the axial- and radial-
velocity components into one streamwise component.
angd are thus two-dimensional. The solution can be
resolved into three velocity components since the
shape of the surface is known. Specifying the
Stream-surface thickness allows variable blace
heights and end wall displacemer® thicknesses to
te moociled. This 15 similar to specifying area
change in the one-dimensional nozzle equations,
Since the effects of rauius change and stream-
surface thickness are modelled in iais analysis,
it is termed “quzsi-tnhree-cimensional.” Examples
of quasi-three-aimensifsal turbomachinery analyses
incluge Yinel methoas , streT?‘functiOn
methocs, potential methogs, ana tuler methocs.13

In the present work, the Euler anc Navier-
Stokes code developea for flat cascaces in Ref. 6
nas been extendea to a quasi-three-gimensional
analysis, 1t is thought that this is the first
Navier-Stokes analysis to include the effects of
rotation, ragius change, ang stream-Surfise thick-
ness. The explicit MacCormack algorithm!® used
in® has been replaced with an explicit two-stage
Runge-Kutta finite-dlgference algorithm based on
the work of Jamascr Efficiency is achieved
by three means: vec*orizaticr, use of a variable
time-step, and by use of a multigrid ccheme gevel-
oped b{ NS and mocified by Johnson and
Cnima 17-19

Goverr:'nc Egquations

The axiiymmetric (m,e) coorcinate system
usd for the Juasi-three-cimensional analysis is
show? in Fig. 1. Here the m-coordinate it
aefinzg by

2 2 2
am = 0z + ar

(1)

and the s-coordinate Vs definea by:
o m6' - ut (2}

where &' s fixea in space and e rotates

with the blace row withh anguiar velecity &. The
radius r and the stream surface thickness h
are taken to be known functions of m. In this
coorginate system the aimensionless Navier-Stokes
equations may be written in the following nearly~
conservative form;

2,8 * 2 (F - Re'lR) *a,(6 - Re'IS) =K (3)
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The viscous terrs in the energy equation are:
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where

4 = VvD/c is the soritc velocity, ang the nor-
malized thermal conductivity k equals ore.

The shear stress terms are:
- . . v
°ll = zuamvm Av v
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o33 = 2wV ho/h + v e v

o1 = v vae - Vo Tulp * llraevm)

and

A9 ¢ Vo= '% u {amvm v, (rm/r + hm/h)* llraev’ (6)
is tne agilitation,

The equations are nonaimensionalized by arbi-
trary reference quantities [nere the inlet tota)
density and critical sonic velocity define the
reference state), and the Reynolds number Re and
the tranat) number Pr must be specified in terms
of tnat state., These equatrons assume that the
specific neats Cp and (C, anc the Pranctl number
are constant, that Stokes' rypothesis 1 = -2/3 4
is valiag, ang that the effective viscosity may be
writter |

=y ; MY
lamirar turbulent

Equatiune (3) to (6) are transformed from the
(m,6) cocrainate system to a ceneral bocy-fitted
{§¢,n) crordinate syster using standard methods.
Tne trin-layer assumpticn is then used to elimi-
nite viscous gerivitives in the streamwise (&)
girection, thereby reduling computational sverhead
while retaining the capability ¢f computing sepa-
rated flows. The resulting engéions are similar
to those cevelopeo by Katsanis,
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and

2
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In Eq. (8) the overbar: denote a rescaling
of the metric terms:

Tt noangr et (o)
where ) is the Jacodian of the transformation
1

Jagng - ng, = W (10)

and the metric quantities are determined from the

grid-point coordinates using central uifferences
ang:

(=i Gg = =dn g
(11)
nm - -\h‘; n. - Jl'ﬂ‘
The relative contravariant velocity components
W and W' along the ¢ and n grid lines are
given by:

n -
+
LALLM "o %

W = LVt (12)

The shear stress terms are found from £Eq. (6)
by replacing ap with nm, and 1l/ra, with
Todn-

The quasi-three-dimensional equations
(Eqs. (?7) to (12)) are similar to the two-
aimensional equations solved in Ref. § except for
the source term K7, the radius appearing in the
e-momentum equation, the rescaled metrics
(€q. (9)), and the relative velocity component
Wy appearing in the contravariant velocities
(tq. (12)). "Equations (7) to (12) reduce to the
two-dimensional equations for constant r and h,
and zero rotation. Note tha: Eqs. (7) to (12) are
independent of the magnitude of the stream surface
thickness h so that any function h(m) > 0 may
be useas. The equations do depend on the magnitude
of the radius r because of the 1/r terms scal-
ing ¢y and »y in Eq. (9).

For turbulent flows the two-layer eday-~
viscosity model developed by Baldwin and Lomax2l
is used. In the (m,) coordinate system the wall
shear 1, and vorticity u required by the model
are given by

wTl2w" ¥ (amv. * Uragy, - v.rm/r) w (13)

w s % (amw° - 1/ra°vm + v'rmlr> (14)

Computational Grig

Body-fitted grids for this work were
generated using the GRAPE code (GRids about Air-
foils usisg ggisson's tquaticn) developed by
Sorenson.c¢» Brietly, the code allows arbi-
trary specification of inner and outer boundary
points, then generates interior points as a solu-
tion to & Poisson equation. Forcing terms in the
Poisson equation are chosen such that decired grid
spacing ang intersection angles may be maintained
at the inner and outer boundaries.

New inner and outer boundary subroutines were
written for turbomachine geowetries. The new
inner boundary has constant spacing around blade
leacing and tiailing edges, larger constant spac-
ing over blade surfaces, and exponential stretch-
ing connecting the regions. The new outer
boundary is composed of the mear-camber line
between the blades, a quadratic extension upstream,
and & linear extension downstream, The C-snaoed
grids are periodic over the pitch of the blade.
Grids are generated in a Cartesian (m,Fa, coor-
tinate system, where ¥ is some mean -adius.

The local radius and stream surface *.ickness are
Suppiied to the Navier-Stokes -.ue at a later time
as tabulated functions of a, then spline-fit on
to the grid. The * .=, rg/r and bm/h  in

Eqs. (7) and (8) are calculated using central
differences and are stored.

Initicl Conditions

Since a centrifugal compressor can produce
pressure ratios of 5:1 or greater it is not gen-
erally possible to start a quasi-three-dimensional
calculation with conctant initial conditions.
Instead an analytic solution of the one-dimensional
flow equations with area change is used. Turbo-
machinery blades are usually designed based on
desired leading- and trailing-edge velocity tri-
angles, so the relative flow velocity W and
angle o at the leading edge and the relative
flow angle at the trailing edge are used as input
for the initial conditions.

Using ()' to denote absolute total condi-

*fons and ()" to denote relative total condi-
ticns, the continuity ana energy equations are

M a orhash cos o = constant {15)
=0T -ruv, =« CT¥ - 142 rzn2 = constant
P L] p

(16)

where ag
rothalpy.

‘s the blade spacing and [ 1is the

Uutside of the hlace row the angular momentum
equation gives:

rvg = constant (17)

Equations (16) and (17) can be used with the isen-
tropic relations .o show that tota) conditions are
corstant outside of the blade row. Evaluating

£q. (15) at some point (); and using €q. (17)

to eliminate a gqives:



2 m 2
H2- (W)*Hoz (15\

Now the isentropic relations and the defini..
tion of T2“ €an be used to eliminate oy giving:

]
. AAUER!
oy = 0y (1 - =2 (19)
2,7,

where
1
o\ -1
» “ 2
92-91 ?Il—
1

Substituting £q. (19) into £Eq. (18) gives:

-2
H2 v = 1
2 2 2 2
W) -9 1 - - -w., =0 (20)
2 2 2T 82
p2
where
m
$oy =
°2r2h2°°

Equation (20) is solved for W at each
grig point upstream of the blade usfng Newton
iteration., Other flow quantities ara then found
using £q. (17), the known total conditions, and
tne isentropic relations.

Withing the blade row rvg ¢ constant, so
Eq. (17) is replaced with an assumption that the
flow angle ay varies linearly through the blade
row. A derivation similar to that above nijves;

-2
2\y - 1
W o2 [y o W .0 (21)
2 "2 T
p2
where
m

’2 =T ———
92r2h2 coS 02

which is solved at each grid point within the
blade row. Once the flow conditions are known at
the trailing edge, Eq. (20) can be used for the
downstream region.

Boundary Conditions

At the inlet, total pressure, total tempera-
ture, and whir) rve are specified. For suosonic
inflow the governing equations have gne negative
Eigenvalue so that one variable at the inlet must
be computed as part of the solution. Here a char-
acteristic relation is used to extrapolate the
upstream-running Riemann fnvariant to the inlet.

The axisymmetric
written as;

Mm-momentum equation may be

atR‘ + (vm - a)ﬂmR' = (vf* avm) ralt * avy ho/h
(22)
where

- 23
R -Vm-Y—_r

is the upstream-running Riemann invariant. For
Steady axisymmetric flow Eq. (22) may be written
as:

3
- [ 1 I3 )
3*,R 0T F (m) [(va tav) AR hm/h]

(23)

Equation (23) is backward-differenced and
solved for R~ at the inlet. Then vg is found
fron R~ and the specified whir) rvg and total
temperatvre T using:

me

(-DR” + yflenec 1 - 28] - 21 (72

v+ 17
(24)

Density ang energy are founa using isentropic
relat ‘ons.

At the exit the static pressure is specified
and the other flow quantities are found using
first-order extrapolation, Zeroth-order extrapo-
lation is not usually sufficient in cylindrical
Coordinate systems because the radius and thus
the velocity may change between grid noints. For
the same reason the inlet and exit boundaries
cannot be pleced arbitrarily far from the blades.
Too small a radius can Cause the flow tc be super-
sonic and to large a radius ca: cause the velccity
to approach zero at the boundaries.

Blade su-face pressures are found from the
normal momentum equation:

(Egnp * E;;;)J‘P + (ni + Rf)ano

= - + 5 + M -
p%hmam %%%) o“%g n”Mer

(25)

where W* o 0 on the surface for viscous flows.

Periodic boundaries are solveg like interior
points.

Fine-Gria Algorithm

On the fine grig an explicit two-stage
finite-difference RYgge-Kutta algorithm based on
the work of Jamesonld ig ysed. |t is given
below as applied to Eq. (7).



Two-stage Runge-Kutta algorithm

a(l) = an - GlbtRn

(26)
59 . g - el
where
a = 1.2
R. . m Ky v 2 [(Feuy «=Fv )
i-J 1|J ? "1:.’ ‘-IIJ
-~ P ,l - -
¢ 6y gep = Gy yor) - ReT (S gy - Sy 500)
Artificial dissipation
an"l N 6(2) . D(Z) (27)
Collect residuals
R R (28)

The two~stage scheme given by Eq. (26) has a
Courant number limit of one, It is used in pref-
erence to a higher-order scheme with a higher
Courant number limit because the multigrig scheme
used here also has a Courant number limit of one,

Four minor advantages of the Runge-Kutta
scheme over the MacCormack scheme are nated:

l. A steady Runge-Kutta solution is independ-
ent ot the Lime step while a steagy MacCormack
solution is not. This is not true when the arti-
ficial dissipat.on is added in a fractional step
as in Eq. (27).

2. The centrally-differenced Runge-Kutta
scheme produces perfectly symmetric solutions for
symmetric problems while the one-sided MacLormack
scheme does not.

3. For a two-dimensional problem with
centrally-differenced metrics, the Runge-Kutta
scheme exactly conserves a rree stream while the
MacCormack scheme coes not. Although the Runge-
Kutta scheme is not fully conservative for the
quasi-three-dimcnsional problem because of the
source term, it has been found to possess better
conservation properties in general,

4. The Runge-Kutta scheme is slightly easicr
to program than the MacCormack scheme.

Differences in convergence rates bSetwe:n the two
schemes are negligible for Courant numhers near
one.

Artificial Dissipatior

Dissipative terms consisting of second and
fourth differences are adoed to prevent odd-even
point decoupling and to 1low shock capturing,
The uissip?give terms are simiiar to those used
by Jameson:? and others. A ane-dimensiona’
version (g-direction) is given below. In two
dimensions the dissipation is applied as a
sequencé of one-dimensional operators.

0 = Clup' P! Qg = wgly gy, (29)
where
A 2, -2
Ce=Z 4y ? )
J
up = 0(1)

ug = 0(1/16)

The terms in the coefficient ( balance
similar terms in £Eq. (26). In smooth regiors of
the flow the dissipative terms are of third order
and tnus do not detract from the formal second-
order accuracy of the fine-grid scheme, In
regions of the flow where the second difference
of the pressure is large, the second-difference
dissipation hecomes locally of first order. Note
that in other work including Ref. 15 the term
1Ppgt is comminly divided by an average pressure,
Thﬁg is not done here because pressures through a
centritugal compressor can increase by factors on
the ordir of five, which woulcd decrease the
gissipation correspondingly.

Stability Analysis

A stability analysis of the fine-grid algo-
rithn is performed in two parts. The first part
exariines the mooel problem considered by Jameson}
ang is used here to choose the parameters in the
two-~-stage scheme, The model problem is the one-
agimensional convection equation with third-order
artificial dissipation:

Qe * Qy * DAKJ"xxxx =0 (30)

Applying the two stage scheme (Eqs. (26) and (27))
gives:

(1)

qQ = qn - ﬂl % iq.]"l = QJ_I)n
Q(Z) = Qn _ % (qu.‘l _ qj_l)(l)
ntl  (2)
q =g " (°J-2'“°J_1’6°J”°qjo1‘“3*2) {31)

where o = at/ax is the (our ant number,
1f we consider a Fourier comporent of the
sotution

q? IEVLPRL L BV (PR (32)
where V is the amplitude, p
L = pax, and 1§ «

factor is given by:

s the wave number,
-1, then the amplification

n+}

g et r [1 - dir(l - cos 4)%)
v

{33)
x (1 - a1 sing - allz sin2 £)

= damping factor x characteristic
polynomial for undamped scheme.



The damping coefficient u 1is chosen such that
g-Oat [ = x, giving uwa 3/{1s l).

An yndamped n-stage scheme can only be
stable to 12 = n -1, 50 1 is taken to be one
while ay is chosen. Figure 2 shows a plot of
£q. (33) for several values of a}, with 2 =l
and u = 1/(16 2). [t can be seen that the two-
stage screme is stable for 0.5 < a] £ 1.7, with
o*’ﬁ 1.2 giving the best damping over the range
ot frequencies. For a) « 1.2 and 4 = 1/(16 1)
it can be shown that the two-stage scheme {5
stable for Courant numbars A £ 1.1. In general
the twn-stage scheme is first-c-der accurate in
time. It is second-order accurate in time only
1f gl - 0.5-

The second part of the stability analysis
consider< the linearized Euler subset of the
governi.g equations {Eqs. (7) ang (8)). A
Von Neumann analysis shows the stability limit on
tne Lime step to be:

8t < bﬁ*ﬂ"*d{(tm’nm)z'(f,’??)z

-1
. verm/r .I
2agfley * ng)< 0 (@, * T, FJ
which is implemented as:
8t < CFL x }yvoidm « nwelo; + aydh + ®
v.rm/r 1-1
¢ (34)
ZaVOmZ + dT!_
where
dm2 - "m' « lnmn
&8 1T +am

A spatially-variable time-step at; ; 1is
used in the two-stage scheme (Eqs. {26) Mo (27))
to accelerate convergence to steady state.
Equation (34) is used to choose the time step at
each grid point such that the Courant number is
constant, typic.lly CFL = 0,95. Time steps are
calculated based on the initial conditions. They
are stored and not updated during the
calculations.

Multigrid Algorithm

The muitigrid algorithm origlaaisd by Nil6
and mogified by Johnson and Chimat/=*? is used to
accelerate convergence of the fine-gr.d algorithm,
Ni's scheme is basically a one-step Lax-Wendroff
schem: applied on a coarse grid. Ni used ig to
accelerate his own fine-grid Euler scheme.

Johnson adapted Ni's method to other ff9e-grid
schemes including MacCormack's scheme. He

also used it for viscous flows by demonstrating
that dissipative terms need nov be included on

the coarse grids. Thus the multigrid scheme used
here is based solely on the Euler equation.. [t
is eatirely indeperdent of the viscous terms, the
turb::*ence model, and the artificial dissipation
used on the fine grid.

One-step Lax-Wendroff sc' nes including Ni's
scheme require temporal derivatives of the flux
vectors. These terms are computed as the Jacobian
matrix of the flux vector times the temporal dif-
ference of the solution vector, Johnson replaced
these lengthy computations with a direct temporal
difference of the flux vector u<gng the old and
new solutions on the fine ng.1 This “flux
based* scheme is considercoly simpler than Ni's
original scheme.

The flux-based multigrid scheme is derived
by expanding the fine-grid change ag™l,
(tg. (28)), ‘n a Taylor series.

Aan*? - an+l 1

aq + At(oan' )t + O(Atz)

Tne Euler equations are used to replace the third
term,

ant] - - -

(a7 )y = [at(K - F, - 6 )] (35)
Interchanging the space and time derivatives and
using backwara differencing in time gives:

(68"'1)

Leatfy - B - 8)

ant]

- (K . in)_(?n+1 _ ?n)g_(an+l _ ﬁ")

n

and finally

an+ Tn+l

aq z 45"01 + At[AR - (A?)g - (Aﬁ)nJ (36)

where

oK™ LK™ - R(gM, ete.

Equation (36) is implemented aon a coarse grid
with spacing taf, and tan, and time step

tAli.J .« « 5 using:

ol'2p4.'

Aan’Z - 1 &

I ?[Aa * Aty (1 ak

(:Ai - &f

]
(-4
-

'

Aa)]i’l.j*l
29) (R
Aa)]i-t,,jﬂ

+ [a& * ety g (Lak + oF + AG)]i-&,j—lg nl
{37)

+

’[Aa oty g

+ [AE * 8ty Lak + of
1 ]

Fine-grid changes agM™! are restricted to
the coarse grid by injection., The multigrid algo-
ritQ@ (Eq. (37)) computes coarse-grid corrections
ag" based on changes in the fine-grid solution.
Thus the coarse-grid corrections must vanish if
the fine-grid solution converges, thereby retain-
tng fine-grid accuracy.



The coarse-grid corrections are prolonged
back to the fine gric¢ using bilinear interpolation
and the fine-grid solution is updated. The
process may then be repeated on a coarser grid.

vectorization

The explicit Runge~Kutta and multigrid algo-
rithms used here have been highly vectorized for
the Cray I-5S at NASA Lewis Research Center.
Indeed the Runge-Kutta computations were clocked
At about 40 million floating point operations/sec
(40 mflops) for an Euler solution on a 113 by 25
grid. The efficiency of the multigrid computa-
tion: decreases as the grid gets coarser and the
vectors get shorter.

Tne code was redimensioned for each grid size
run and required 260 K words of memory fur the
Targest grid (161 by 33). The quasi-three-
aimensional code requires about 20 pergent mor 2
storage than the two-dimensional code.

Results

Results are presented for the following
problems: a cascade of thin flat plates with
round leading edges, a centrifugal impeller, and
a vaned-radia) diffuser. Both Euler and Navier-
Stokes results are presented.

To aid in developing the quasi-three-
dimensional code and to illustrate the capabili-
tiec of the analysis, a model problem was devel-
oped representing a cascade of thin flat plates
with round leading adges., The plate has unit
chord, four percent thickness, and a pitch of 0.7.
Figure 3 shows the computaticna) grid around the
plate. The inviscia flow grid had 113 by 25
points with 5° spacing around the leadlng edge
circle and a normal spacing of 1.8x10-%. The
viscous flow grid had 1;3 by 33 points with a
normal spacing of 5x10™2. The grid shown in
Fig. 3, and most of the subsequent grid and con-
tour plots in this paper, are drawn in a tans-
formed plane in which the abscissa is s dm/r
and the ordinate is eo. This transformation
preserves angles and is discussed in Ref. 10.

Grids are generated in an {m,78) coordinate
system where T is some mean racius, and are
independent of the local radius r and stream-
surface thickness h. Values of r and h are
supp'ied to the quasi-three-dimensional code later
and can be varied to simulate different geometries.

A flat cascade was simulated by setting
r = constant and h = constent. Figure 4 shows
static pressure contours for an Euler solution
with an inlet Mach number of 0.33., (Titles on
the figures give nominal valuer of Mach number,
Reynolds number, and flow angle based on the
leading-edge velocity triangles given as input.
Actual inlet conditions may change as the solution
develops.) The contours shor the stagnation
region and a mild acceleration due to blockage.
[dentical results were obtained using the two-
ginensional code.® The solution was run 5000
cycles with two multigrid levels and took 165 sec
on the Cray. The residuals were reduccd efght
decades so the solution could have been stopped at
about 2000 cycles with a three-decade reduction
in the residuals.

A radial duct with constant crcss-sectiunal
area was simulated by setting r = m and
r x h e constant. The solution is identical to
the flat cascade results shown in Fig. 4.

A radial diffuser with 36 blades was simy-
lated by setting r «am and h = constant.
Figure 5 shows static pressure contours for an
Euler solution with an inlet Mach nimber of 0.38
and an exit Mach number of 0,27. The plot is
shown in polar coordinates. The contours show the
diffusion of the flow due to the area change. The
solution was run 2500 cycles with two multigrid
levels and took 92 sec on the Cray. The residuals
were reduced 6 decades so the solution could have
been stopped at about 1250 cycles with a three-
decade reduction in the residuals.

A centrifugal impeller with 36 blades was
simulated by setting r = m, h = constant, and a
rotation rate of 1000 raa/sec {9550 rpm).

Figure 6 shows Mach number contours for a tur-
bulent solution with an inlet Mach number of 0.5
and an exit Mach number of 0.4l. The impeller
produces a total pressure ratio of 1.05. The
plot is skown in polar coordinates with rotation
upwards. The inlet whirl is zero but because of
the rotation the in.et relative flow angle is
10.6°. Tris incidence desymmetrizes the flow and
produces 3 pressure loading on the blade. At the
exit this loading conflicts with the specified
exit pressure and is responsible for the kinks in
tha contours there.

Figure 7 shows convergerce histories for the
previous example with various levels of multigrid.
Convergence is taken to be a ghree decacge drop in
the maximum residual to 2x107°. For this example
two grids are 1.64 times faster than the fine grid
and three grias are 3.12 times faster than the
fine grid. CPU times are included on the figure.

The remaining results are for a nominally 6:1
total-pressure ratio centrifugal impeller and a
matching vanea-radial diffuser, These components
were designed Ly the Air Force for use in an
auxilliary power unit ang were modified and tested
at NASA Lewis Research Center. The compressor
has a diameter of 16.1 cm. It has 19 blades and
was desinned for a total pressure ratio of 5.9:1
with a mass flow of 1,033 kg/sec at 68 384 rpm.
The diffuser has 27 blades and a diameter of
25.1 cm. Further details concerning tne compon-
ents can pe be found in Ref., 25.

Figure 8 shows the computational grid used for
the impeller. The grid has 161 by 33 pointi (161
by 17 shown) with a normal sgacing of 3x10™% cm
for inviscid flows and 5x10-° cm for viscous
flows. The leading edge is round with a radius of
0.045 cm and the grid points are 7° apart,

Figure 9 shows normalizeo radius (RMSP = r),
stream-surface thickness (BESP = h), and their
product {R*B a rh} versus fracticn of impeller
chord. Tgese values were taken from a meridional
analysis.

tuler and Navier-Stokes solutions were each
run 2000 cycles with two multigrid levels, reduc-
ing the maximum residual three decades. The Euler
solution took 117 sec ana the Navier-Stokes
solution took 185 sec on the Cray.



Surface static pressure distributions for the
impeller are ccmpared in Fig, 10. Three solutions
with identical mass flows are shown: an Euler
solution (dashed), a Navier-Stokes solufaon
(solid), and a panel solution (circles,*V). The
Euler and Navier-Stokes solutions were run with
various exit pressures until the desired mass flow
was obtained. The shapes of the three pressure
distributions are similar but the panel solution
has higher pressure levels since it is loss-free,
The Euler solution has strong shock losses which
lower the pressure levels. The Navier-Stokes
solu.ion has weaker shocks due to viscous smooth-
ing of the leading edge, but blockage eff-:ts
decrease the pressure levels overall.

Figure 11 shows relative Mach number contours
for the tEuler solution. The dashed line is the
sonic line. At the inlet the relative Mach number
is 0.91. At the leading edge the flow has 10° of
incidence. This produces a large supersonic
bubble with a peak Mach number of 1.92 on the
suction (upper) surface. The bubble terminates
with a normal shock that is smeared due to grid
shearing in this region. There is also a tiny
supersonic bubble on the pressure (lower) surface
which is not visible at this scale.

Some interesting flow phenomena evident in
Fig. 11 can be explained by the concept of a
relative eddy. The flow through an impeller is
predominantly inviscid and tends to remain irrota-
tional. The blade row in Fig. 11 is rotating
downward and so adds clockwise vorticity to the
flow. To remain irrotaticnal the flow develops a
counterclockwise circulation within the passage.
Thus the flow can be modelled as a superposition
of a through-flow component and a component rotat-
ing counter to the blade row called a relat:'e
eady. The effect of the relative eddy is to
accelerate the flow on the suction surface and
decelerate the flow cn the pressure surface as
can be seen in Fig. 1l.

A more dramatic effect of the relative eday
is to sweep the unconfined flow beyond the traji-
ing eag2 up and away from thie blade in 3 spiral,
with a slip line leaving the trailing edge. As a
comnon example of slip from rotating machinery,
consider the flow of water from & lawn sprinkler
as viewed rotating with the sprinkler. The !low
spirals up and opposite to the rotation of che
sprinkler. It is emphasized that this is strictly
an inviscid phenomena.

Figure 12 shows relative Mach number contours
for a Navier-Stokes solution for the impeller,
Here viscous effects reduce the peak suction-
surface Mach number to 1.72 and the peak pressure-
surface Mach number to just over 1.0. B8oth
surfaces have small leading-edge separation bub-
bles that are barely resolved on this grid. The
pressure surface quickly develops a thick boundary
layer and the suction-surface boundary layer
thickens after the shock. This blockage causes
the viscous pressure levels to be lower than the
inviscio levels in fig. 10. The rotation ener-
gizes and diminishes the boundary layers on the
radial portions of the blade.

Here again the relative eady sweeps the flow
off the trailing edge in a spiral. 3ince the flow
does not follow the grid 1ines the thin-layer
assumpt ion may be invalid and diffusion across the

wake may not be properly accounted for. This is
one shortcoming of the presert analysis. However,
since the .railing-edge s11p is an inviscid
phenor. :na it is felt that the character of the
solution is correct,

Figure 13 shows the computational grid for
the radial diffuser vane. The grid has 145 by 33
points ‘145 by 17 shown) with a n-rmal sgaclng of
2.5x10°7 cm for tnviscid flows and 6x107° cm for
viscous flows. The round leading edge has a
radius of 0,025 cm and the grid points are 7°
apart. At the trailing edge the actual vane is
cut off at constant radius and the duct turns
axially. For this analysis the trailing edge was
sharpened and the duct was extended radially.

Figure 14 shows tne normalizead radius and
stream-surface thickness versus fraction of vane
chord. These values were taken frog s combined
meriaional/boundary-layer analysis.®+? Alitnough
the vanes have constant height, boundary layer
blockage decreases the flow area by nearly
50 percent.

An Euler solution was run 4000 cycles with
two multigrid levels, taking 214 sec on the Cray.
A Navier-Stokes solution was run 2000 cycles with
three multigrid levels, takirg 179 sec. In each
case the maximum residual was reduced three
decages.

Surface static pressure distributions for the
oiffuser vane are compared in Fig. 15, Again,
panel, Euler, and Navier-Stokes solutions are com-
pared, The shapes of the pressure distributions
are similar but the panel solution has higher
pressure levels since it is loss-free. The fuler
and Navier-Stokes solutions each have small super-
sonic bubbles terminated by normal shocks near the
leading edge, and the losses lower the pressure
levels. Additional blockage effects cause the
viscous pressure levels to be even lower than the
inviscio levels.

Figure 16 shows Mach number contours for the
tEuler solution. The inlet Mach number is exactly
1.0 but the radial component is only 0.29 so the
flow is subsonic in character. Because of the
increasing radius the total Mach number drops to
about 0.83 near the leading edge. The flow has a
slight positive incidence at the leading edge and
the flow accelerates to a peak Mach number of about
1.5 on the suction surfaze. The tiny supersonic
bubble (visible only as a black dot at this scale)
terminates with a shock at atout 0.26 percent
chord. The pressure surface develops an even
smalier supersonic bubble. The diffusion through
tne passage is evident in Fig. 16.

Figure 17 shows Mach number contours for the
Navier-Stokes solution. Here vis.ous effects at
the leading edge entirely suppress the formation
of superscnic bubbles. The thick boundary layers
that aevelop in the diffuser are obvious, but the
flc» remains attached on both surfaces.

Concluuing Remarks

A quasi-three-gimensional Euler ana Navier-
Stokes anal‘.is technique has been developed for
plade-to-bidde flows in turbomachinery. The
enalysis solves the *hin-layer Navier-Stokes



equations written ir general coordinates for an
axisymmetric stream surface, and accounts for the
effects of blade-row rotation, radius change, and
stream-vurface thickness. It is believed that
this is the first Navier-Stokes aralysis to
include these effects.

The solution technique is a two-stage Runge-
Kutta scheme based ¢ the work of Jameson. Effi-
ciency is achieved through use of vectorization,
a spatizlly-variable time-step, and a multigrid
scheme based on Johnson's revisions of Ni's
scheme. Th: multigrid scheme typically reduces
the CPU time required by “he fine grid scheme
alone by a tactor of about three, for both
inviscid and viscous 7.ows.

Results for a model problem show the analysis
to be viable for a variety of axial, radial, and
rotating geometries. Results for a centrifugal
impeller and a radial diffuser vane show that the
analysis can predict a number of phenomena that
are not accounted for in previous analyses. These
phenomena include: leading-edge stagnaticn
points, leading-edge separation, supersonic
regions and shocks, blade-surface boundary layer
growth, and trailing-edge slip lines.

It is thought that the ability to predict
these phenomena rapidly for general geometries
could make the quasi-three-dimensional analysis a
useful teol for turbomachinery design. Further-
moire the quasi-three-dimensional analysis can
provide insight into both physical and numerical
problems that can be expected with fully three-
aimensional problems in the future.
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Figure 8. - Computational grid for 6:1 pressure ratio centrifugal impeller.



ORIGINAL F. . =
- . OF POOR QUALITY

£
t
>
0.8
-
s
-
-
- ~
-~
-
’\‘»\ -
A
\.
- .
B T -—
- - SLplE .
LT @ Tw. . LRI
LR e N 4 fma ¢ R
'

Figure 9. - Radius (RMSP) and stream surface thickness (BESP) for
6:1 centrifugal impeller.

_— ]

————
L]
-
(=]

r
|
ot
! 2 | 8 NAVIER-STOKES, PRESSURE SURFACE d‘s
; Y € NAVER-STOKES. SUCTION SURFACE
i § ©- EUUER
| Q ©  MCFARLAND PANEL SOLUTION
QU

0.0 1 1 A 1 1 1 | |
0.0 0.5 (Z2-2LE)C 1.0

671 CENTRIFUGAL COMPRESSORy TURBULENT

NACKH 0, 9¢% ({3 1278098, ALPHA 63,62 ITER 2000

Figure 10. - Static pressure distribution for 6:1 centrifugal impelier,
F o

]
-




6. CENTRIFUSAL CONPRESSORs INVISCIOD
NACH O. 98¢ /3 0. ALPHA 63,62 1TER 2000
NACH REL NIN 0.100 NAX 1. 900 INC 0.100

Figure 11. - Mach number contours for inviscid flow in 6:1 centrifugal
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